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Baylor WMCS Program 

• Wireless and Microwave Circuits and Systems 

• Wireless and Microwave Education and Research in a 

Caring, Christian Environment   

• Launched in 2008. 

• For more information, go to http://www.wmcslab.org.  
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Load-Pull and Radar Power 

Amplifiers 
• Radar power amplifiers are being forced to operate in 

tighter spectrum allocations, while maintaining high 

efficiency.   

• The National Broadband Plan  

– Mandates the release of 500 MHz of newly available 

spectrum for wireless applications in the next 10 years. 

– Much of this spectrum will be re-allocated from radar.   

• Radar systems may have to eventually operate in a 

dynamic spectrum access (DSA) environment. 

– Changing spectral constraints 

– Reconfigurability   
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Spectral Constraints 
• Radar criteria imposed in the Radar Spectrum 

Evaluation Criteria (RSEC), which are 

determined by the National Telecommunications 

and Information Administration (NTIA). 

• Spectral spreading is caused by nonlinearity in 

the nonlinear power amplifier  intermodulation   

• Spectral mask outlines the required confines of 

the signal:    
*Reprinted from J. de Graaf, H. Faust, J. Alatishe, 

and S. Talapatra, “Generation of Spectrally Confined 

Transmitted Radar Waveforms,” Proc. IEEE Conf. on 

Radar, 2006, pp. 76-83 
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Sources of Spreading 

• Third-order nonlinearity (“intermodulation 

distortion”) in the amplifier transistor between in-

band components 

• Assume a third-order nonlinear system:                         

 

• Stimulate with a two-tone input signal:   
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The Need:  Fast Pareto Search 

• Pareto search:  an optimization for two 

governing criteria (i.e. PAE and ACPR) 

• The Pareto front is the “tradeoff curve” that 

connects the PAE and ACPR optimum points.      

• Goal:  Maximize PAE while maintaining ACPR to 

meet spectral mask requirements.  

• Applications: 

– Real-time radar reconfigurability 

– DSA cognitive radio platform 

– Faster bench-top measurements  
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Baylor Optimization Test Platform 

Signal Generator 

Source Tuner Load Tuner 

Power Meter 

Spectrum Analyzer 

Amplifier 

Power Meter 
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Search Process 

• During the search, neighboring points are 

measured and the direction of maximum 

increase is calculated. 

 

 

 

 

• Search end: 

Candidate 1 

Candidate 2 

Candidate, 5 points, and 

Calculated Maximum 



Intelligent Search for PAE/ACPR 

• Steepest ascent algorithm 

• Maximum PAE found first. 

• ACPR point found from another steepest 

ascent search starting at the maximum 

PAE location.  A small step size is used.   

• The ACPR search will be along the Pareto 

tradeoff line and can be stopped when 

ACPR is low enough. 
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Agilent ADS/Modelithics Model 

Simulation Results 
Standard Load-Pull: 

(Red = PAE, Blue = ACPR) 
PAE Intelligent Algorithm 

18 measurements 

Maximum PAE= 33.90% 

at 0.693<170.71˚ 

Maximum PAE= 33.72% 

at 0.689<172.08˚ 

START 
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Simulation Results 
Standard Load-Pull: 

(Red = PAE, Blue = ACPR) 
ACPR Intelligent Algorithm 

25 measurements 

Minimum ACPR = -52.00 dBm 

at 0.935<173.43˚ 

Minimum ACPR = -52.01 dBm 

at 0.939<-174.32˚ 

START (PAE Max) 
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Simulation:  Multiple Starting 

Points 
18 PAE/25 ACPR meas. 

20 PAE/27 ACPR meas. 

17 PAE/31 ACPR meas. 21 PAE/33 ACPR meas. 

27 PAE/33 ACPR meas. 

15 PAE/28 ACPR meas. 
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Measurement Search 

21 PAE/ 25 ACPR Measurements                       1000 Measurements 

Intelligent Search Standard Load-Pull  

(Red = PAE, Blue = ACPR) 

PAE Max 

ACPR Min 
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Measurement:  Multiple Starting 

Points 

Excellent convergence agreement 

between all starting points 
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Pareto Path Approximation 
Intelligent Search Pareto Line Plotted  

from Standard Load Pull  

PAE Max 

ACPR Min 

The steepest ascent reasonably estimates the Pareto front. 
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ACPR Tolerance  

Measurement Search 
• Goal:  Obtain the best power-

added efficiency for ACPR < - 

29.4 dBc.  

• Intelligent search process: 

– Steepest ascent search for 

PAE maximum (red). 

– Small-distance steepest-

descent toward ACPR 

minimum (blue)  Pareto!  

– Stop once inside the ACPR 

tolerance.   

• 21+16 = 37 measurements 
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ACPR Tolerance Measurement 

Search 

    21 PAE/16 ACPR meas.                1000 meas.   

PAE Max 

ACPR Min 
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ACPR Tolerance Measurement:  

Multiple Starting Points 

• End-point statistics: 

 

 

• All starting points converge to 

approximately the same point on the Smith 

chart.   
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Conclusions 

• For radar power amplifiers, the highest possible 

power efficiency should be obtained while meeting 

linearity requirements.   

• A load-pull search optimizing PAE under ACPR 

requirements has been developed. 

• Excellent correspondence has been obtained in 

both measurement and simulation with traditionally 

acquired load-pull queries.   

• The work is broadly applicable to both real-time 

reconfigurable systems and bench-top laboratory 

measurements.     
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